Copy 6 RM E55B10 ACA RM E55B10 To ## RESEARCH MEMORANDUM HIGH-ALTITUDE PERFORMANCE OF AN EXPERIMENTAL TURBOJET COMBUSTOR HAVING VARIABLE PRIMARY -AIR ADMISSION By David M. Straight and J. Dean Gernon Lewis Flight Propulsion Laboratory CLASSIFICATION CHANGED UNCLASSIFIED 10.000 (10.00 By authority of Masa TPA 7 Date 5 CLASSIFIED DOCUMENT EARLY AFROMAITHUR LABORATURY (IRRARY, RAVA LANGLEY FIELD, VINGINIA APR 13 1955 of the explosited large. This 18 P. N. C. Been. 786 and 586, the transmission of revelation of which in any manuscript of the highest person is prohibited by law. # NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON April 11, 1955 ### CONFIDENTIAL UNCLASSIFIED NACA RM E55Blo NASA Technical Library 3 1176 01435 8106 #### NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS #### RESEARCH MEMORANDUM #### HIGH-ALTITUDE PERFORMANCE OF AN EXPERIMENTAL TURBOJET #### COMBUSTOR HAVING VARIABLE PRIMARY-AIR ADMISSION By David M. Straight and J. Dean Gernon #### SUMMARY As part of a program to determine design criteria for turbojet combustors, 47 experimental tubular designs embodying variable primary-air openings to control the fuel-air ratio in the combustion zone were investigated at simulated high-altitude operating conditions for a representative 5.2-pressure-ratio engine. The performance characteristics considered were combustion efficiency, operating range, and pressure loss. Variable primary air had a marked effect on combustor performance; in order to maintain maximum combustion efficiency, it was necessary to increase primary-air flow as over-all fuel-air ratio was increased. The best experimental variable-area combustor operated with combustion efficiencies of 89 and 82 percent at cruise engine speed conditions, 56,000 and 70,000 feet of altitude, respectively. At the cruise condition, the efficiencies of the best experimental model were as much as 25 percent higher than those of a reference production combustor of equal size. At full-rated engine speed, however, the efficiencies of the experimental model were 3 percent lower. Combustion efficiencies greater than 90 percent were not readily achieved and this can probably be attributed to the small size of the combustor. At the 70,000-foot condition, the operable fuel-air-ratio range of one model of the variable-area combustor was three times the range of the reference production combustor. Use of variable primary air also reduced the detrimental effects of increased temperature rise on pressure loss. #### INTRODUCTION Design criteria for obtaining high combustion efficiency in turbojet combustors at high-altitude operating conditions are being investigated at the Lewis laboratory. As part of this program, the performance of 47 experimental combustors designed to improve fuel-air mixture conditions within the combustion zone by separate control of the primary air was investigated. Eleven models were chosen as representative and the results are reported herein. 3552 CD-1 The over-all fuel-air ratio, at which a turbojet combustor must operate, varies with engine speed, altitude, and flight speed. The maximum fuel-air ratio of one current engine is about four times the minimum fuel-air ratio; this range may increase in future turbojet engines if improvements in engine design allow higher turbine-inlet temperature, hence higher fuel-air ratios. At both low and high fuel-air ratios, decreases in performance are frequently observed in turbojet combustors. For example, data presented in reference 1 indicate that at low fuel-air ratios, the use of large fuel nozzles with poor atomization reduced combustion efficiency in an annular turbojet combustor. A fact which may be attributed to an over-lean mixture condition in the combustion zone. At high fuel-air ratios, small nozzles with fine atomization also reduced the combustion efficiency, which is attributable to an over-rich mixture condition. One experimental method of continuously controlling the primaryzone fuel-air ratio has been reported in references 2 and 3. The distribution of fuel along the length of the combustor primary zone was varied by means of a series of "staged" injection nozzles. In the experimental investigation reported herein, the fuel-air ratio in the combustion zone of a turbojet combustor was controlled by varying the primary-air-flow rate. All the primary air was admitted at the front end of the combustor through variable openings. Fuel was introduced into a central primary-air opening and was finely atomized by the air (ref. 4). The combustors were operated over a wide range of fuel-air ratios at air-flow, pressure, and temperature conditions corresponding to a 5.2-pressure-ratio engine operating at 85-percent rated speed at altitudes of 56,000 and 70,000 feet. In addition, limited data were obtained at two other air flows, one higher and one lower than the cruise air flow at 56,000 feet. Combustion efficiency, pressure-loss, and temperature-profile data were obtained with variable quantities of primary air. The effects of a number of design variables on combustor performance were investigated; these variables included fuel-injector design, air baffles, liner holes, and fuel dams (ref. 5). The 11 models chosen demonstrate the effect of these variables. No attempt was made to evaluate combustor durability, carbon deposition tendencies, or sealevel high-pressure performance. Also as part of this investigation, the best models of the variablearea combustor are compared with several other experimental and production model combustors. #### APPARATUS #### Combustor Installation The experimental combustor was installed in a duct connected to the laboratory air-supply and altitude-exhaust facilities as shown in figure 1. Combustor air-flow rates and pressures were regulated by remotely controlled valves located upstream and downstream of the combustor. Combustor-inlet air was heated by an electric heater. #### Instrumentation Air flows were measured by a concentric-hole, sharp-edged A.S.M.E. orifice installed upstream of the inlet-air control valves and air heater. Fuel flows were measured by calibrated rotameters. Instrumentation for sensing combustor-inlet and -outlet temperatures and pressures was arranged as shown in figure 1. The combustor-inlet-air temperature was sensed by bare-wire, iron-constantan thermocouples (station B, fig. 1); combustor-outlet-air temperature was sensed by single-shielded, chromelalumel thermocouples (station C, fig. 1). The 16 outlet thermocouples were so connected that individual readings or an instantaneous average temperature reading could be obtained. All thermocouples were connected to self-balancing direct-reading potentiometers. Combustor-inlet and -outlet pressures were sensed by total-pressure tubes (stations A and D, fig. 1) manifolded together at each station to obtain average readings. The combustor-inlet pressure and over-all pressure drop were indicated by an absolute manometer and a U-tube manometer, respectively. #### Combustor The basic features of the tubular combustor used are shown in figure 2. The air flow to the combustor was channeled into three paths. Two central paths fed primary air into the upstream end of the combustor. The inner primary air passed through a swirler into a swirl chamber and thence to a throat section where the fuel was introduced through radial holes drilled in a fuel disk. The air swirling past these holes atomized the fuel. The outer primary air flowed through an annular passage and converged on the inner primary-air current at the point of entry into the combustion space. Both the inner and outer primary-air flows were varied by axial motion of the throat section, which was attached to a movable sleeve separating the inner and outer primary-air passages. Secondary air flowed in the outermost annulus and completely bypassed the primary combustion zone except for small quantities flowing through louvers for cooling the
liner walls. Four large air-entry slots at the downstream end of the liner were provided to obtain a relatively uniform temperature distribution at the combustor outlet. During operation of the experimental combustor in the duct tests, the primary-air flow was adjusted by the mechanical positioner shown in figure 3. The variation of liner open area, expressed as the ratio of primary open area to total-liner open area, is presented in figure 4 as a function of the crank setting of the mechanical positioner. Basic dimensions of the experimental combustor are shown in figure 3. The combustor had a maximum cross-sectional area of 0.267 square feet (7 in. diam). The over-all length of the combustor including the inlet diffuser, which contained the area-varying mechanism, was 31.3 inches. The distance from the plane of the fuel injector to the outlet thermocouples was 27 inches. A total of 47 experimental combustor models was tested during the investigation. Among the variables studied were: fuel-injection method, primary-air admission, and liner configurations. For the discussion presented herein, a limited number of configurations has been selected to illustrate (1) the best performance obtained, and (2) observed trends in performance with design variables. Drawings of the models chosen are presented in figure 5; the model numbers indicate the order in which the data were obtained. A variable-area, pintle-type nozzle (fig. 6) was used to inject fuel in combustor models 41 and 46. This nozzle was designed to overcome the poor circumferential fuel distribution normally encountered with pintle-type nozzles without sacrificing the wide-flow range inherent in this type of nozzle. The fuel is channeled into a predetermined number of "streaks" by the flats ground on the surface of the stem (fig. 6). These fuel streaks flow along the shaft, spread out on the tapered pintle, and are atomized in the air as they leave the sharp edge of the pintle. The original model of this nozzle produced the desired spray form (eight uniform streaks) from 7 to 1915 pounds per hour fuel flow, a 270 to 1 flow range (the limit of the test facility). This range was obtained with nozzle pressure drops from 95 to 395 pounds per square inch. For the experimental combustor models 41 and 46, the nozzle pressure drop was adjusted to a lower value and varied from 20 to 70 pounds per square inch over the range of fuel flows investigated (10 to 100 lb/hr). #### Fuel The fuel used in this investigation was liquid MIL-F-5624B, grade JP-4. Inspection data for the fuel are presented in table I. #### PROCEDURE Combustion efficiency and combustor pressure-loss data were recorded during operation of each experimental combustor model at one or more of the following combustor-inlet conditions: | Condi-
tion | Total
pressure,
in. Hg abs | 1 | Air-flow rate
per unit com-
bustor area,
lb/(sec)(sq ft)
(a) | Simulated flight altitude in reference engine, ft | |-----------------------|----------------------------------|---------------------------------|--|---| | A
B
C
D
E | 15
8
5
15 | 268
268
268
268
268 | 2.78
1.48
.93
2.14
3.62 | 56,000
70,000
80,000
56,000
56,000 | ^aBased on maximum combustor cross-sectional area, 0.267 sq ft. These conditions simulate combustor-inlet conditions in a reference turbojet engine with a pressure ratio of 5.2, operating at 85-percent rated speed (cruise condition) and at a flight Mach number of 0.6. Air-flow rates at conditions A, B, and C are representative of current turbojet engines. Air-flow rates approximately 30 percent greater and 23 percent less than the reference conditions are presented by conditions E and D, respectively. Sufficient data were obtained with each combustor model at several primary-air-flow settings to indicate trends in combustor performance. Data were obtained for most models at conditions A, B, and E; none of the models investigated would operate at condition C. In general, combustor performance was obtained over a range of fuel-air ratios from the lean blow-out point or a minimum temperature rise of approximately 300° F to the rich blow-out point or the maximum safe temperature for the exhaust-gas instrumentation. Combustion efficiency, defined as the percentage ratio of actual to theoretical increase in enthalpy of gases flowing through the combustor, was computed by the method of reference 6. The average combustor-outlet total-temperature reading was used to calculate the enthalpy of gas at the combustor outlet; indicated temperature readings were not corrected for velocity or radiation effects. Combustor total-pressure losses are expressed as the dimensionless ratio of the total-pressure loss to the reference velocity pressure (computed from the air flow, maximum combustor cross-sectional area, and combustor-inlet-air density). Sample combustor-outlet temperature-profile data were taken periodically for each combustor model by recording individual thermocouple readings. #### RESULTS An investigation was conducted on 47 different variable-area combustor models in an effort to obtain optimum performance characteristics at high-altitude operating conditions. Results obtained with several models, selected to best illustrate the trends obtained, are presented in figures 7 to 13. Experimental data for the models are presented in table II. The combustion-efficiency data obtained with combustor model 10 (fig. 5(a)) is plotted in figure 7 to illustrate the effect of varying the primary-air flow. The peak efficiency occurred at successively higher fuel-air ratios as the primary-air flow was increased. At test condition E (fig. 7(a)), the combustor was operated at only one primary-air setting; however, if data were obtained at other settings a similar trend would be expected. The data show that an optimum primary-air flow exists for each over-all fuel-air ratio. Values of primary-zone fuel-air ratio were not measured nor could they be readily computed since neither primary-zone pressure drop nor discharge coefficients of air openings were known. The use of variable primary-air flow to extend the operable range of fuel-air ratios is illustrated in figure 7(d). Rich blow-out occurred at a fuel-air ratio of approximately 0.026 when the primary-air openings were set at 11 percent of total-liner hole area. By increasing the primary-air openings to 19 percent of total open area, combustion was maintained at a fuel-air ratio of 0.038. #### Effect of Fuel Injector Design Several of the 47 models investigated incorporated different methods of introducing the fuel. The effect of two fuel-introduction variables on performance are described in the following paragraphs. Number of holes in fuel disk. - The combustion efficiencies of the combustors having a different number of holes in the fuel-injection disk are presented in figure 8. In figures 8 to 11, only those data obtained with primary-air-flow settings resulting in the highest efficiencies are presented in order to simplify the comparisons. At the milder test conditions E and A (figs. 8(a)) and (b)), the number and size of holes in the fuel disk had an almost negligible effect on the performance; however, at test condition B (fig. 8(c)), there is evidence of increase in efficiency when fewer fuel-introduction holes are used. Preliminary data (not shown in fig. 8) indicated that size of fuel holes was relatively unimportant. Air against mechanical atomization. - The combustion efficiencies of three models having mechanical atomizers installed and one model using air atomization (model 26) are compared in figure 9. In general, all the mechanical spray-nozzle models were characterized by a narrow operating range, even when the primary-air flow was varied. The small fixed-area nozzle (model 34) produced slightly higher efficiencies at low fuel-air ratios at test condition E (fig. 9(a)) and at the high and low ends of the fuel-air-ratio range at test condition B (fig. 9(c)). When a larger fixed-area nozzle (model 42) was used, the operating range was limited to high fuel-air ratios only, and combustion was very rough. The performance of combustor model 41 with the wide-range pintle nozzle (fig. 6) installed was about the same as that with air atomization, except at high fuel-air ratios at test condition E (fig. 9(a)) where air atomization produced considerably higher efficiency. #### Effect of Primary-Air Baffles In attempts to raise the combustion efficiency level of the variable-area combustor, baffles (fig. 5(c)) were attached to the fuel disk to cause major changes in the air-flow patterns in the primary zone. The slotted disk and V-gutter baffles (models 20 and 21) were designed to increase turbulence in the primary zone, and a plain cone-shaped disk (model 25) was designed to increase reverse flow in the center of the combustor. The fuel was atomized by air in these three models. Typical results obtained are presented in figure 10. At test condition A (fig. 10(a)), models 20 and 21 burned with approximately the same efficiency as the basic combustor model 10. At test condition B (fig. 10(b)), model 20 burned with slightly higher efficiency than model 10, whereas model 21 burned with lower efficiencies. The plain disk baffle (model 25) performed with low efficiency at both test conditions. #### Performance Characteristics of Best Models Variable-area combustor models having improved performance characteristics were developed by adding new features to some of the models previously discussed. The combustion efficiencies of these models are presented in figure 11. <u>High-efficiency model</u>. - A small pilot fuel spray was added inside the plain disk baffle of model 25 to provide additional fuel in this region. A row of 0.375-inch holes was added in the liner 6
inches downstream of the fuel disk to increase the reverse flow of air in the primary zone. Finally, another row of 0.25-inch holes with fuel dams were added in the liner 3 inches downstream from the fuel disk to recirculate the fuel which had impinged on the liner walls. The combination of all these changes resulted in a combustor (model 29) having higher combustion-efficiency performance than any other model investigated over most of the range. For both air flows at a combustor-inlet pressure of 15 inches of mercury absolute (conditions E and A, figs. 11(a) and (b)) the combustion efficiency varied from 90 percent at a fuel-air ratio of 0.008 to 85 percent at a fuel-air ratio of 0.026. At condition B, 8 inches of mercury absolute (fig. 11(c)), the efficiency varied from 81 percent at a fuel-air ratio of 0.013 to 69 percent at a fuel-air ratio of 0.026. Although the highest efficiency was obtained with model 29 the combustion was characterized by rough burning. Wide-range model. - Several changes were made in combustor model 29 in an attempt to increase the operable range at high fuel-air ratios and to increase the combustion efficiency. The combustor having the widest operating range (model 46) was similar to model 29 except that the small fixed-area pilot nozzle was replaced by the wide-range pintle nozzle and four smaller fuel holes were used for air atomization (fig. 5(d)). These changes allowed a large percentage of the fuel to penetrate further downstream in the combustor. At high fuel-air ratios at test condition B, the performance of model 46 was better than all other models in both range and efficiency (fig. ll(c)). Blow-out occurred at a fuel-air ratio of 0.041, where the efficiency was approximately 60 percent. The range at the other conditions A and E was about the same as that of model 29; however, the efficiency level was somewhat lower. Model 46 was also characterized by rough burning. Combustor total-pressure loss. - Typical total-pressure-loss data, obtained with several variable-area combustors with plain disk baffles are presented in figure 12. The pressure-loss data are plotted as a function of combustor-inlet to -outlet density ratio. At a constant primary-air setting, pressure drop increased linearly with density ratio. When the primary-air flow was increased by increasing the area of the air openings, the pressure drop was reduced. A curve representing the pressure loss of model 29 at test condition E and at the primary-air settings required for maximum combustion efficiency is shown in figure 12(a). If a constant area setting of 11 percent primary air were used (equivalent to a fixed-geometry combustor), the total-pressure loss would increase from approximately 20 to 25 times the reference velocity pressure for an increase in density ratio across the combustor from 1.0 to 3.2. With variable-air admission (model 29), the pressure loss was only 21 times the reference velocity pressure at the density ratio of 3.2 (equivalent to a combustor temperature rise of 1400° F), a decrease of 16 percent from the fixed-areasetting curve. Temperature profile. - A typical combustor-outlet temperature profile for the high-efficiency model 29 is presented in figure 13. In general, the temperatures were uniform within $\pm 200^{\circ}$ F, although occasionally an eccentric profile was recorded. The eccentricity was usually caused by misalinement of parts in the primary-air passages, or eccentricity of the liner at the combustor outlet. #### DISCUSSION #### Combustor Design Variables The results of this investigation showed that, by continuously varying the primary-air flow, it was possible to achieve nearly constant combustion efficiency over wide ranges of fuel-air ratio. The design features incorporated into the combustor permitted the primary-zone fuel-air ratio to be maintained at a near-optimum value at all operating conditions. From a consideration of the design of the variable-area combustor and the results obtained with the various experimental models investigated, several trends are indicated that may be useful in the design of turbojet combustors. Fuel introduction. - When air atomization alone was employed, fewer holes in the fuel disk improved performance. This result tends to substantiate the theory that alternate air-rich and fuel-rich regions in a combustor primary zone aids combustor performance (ref. 7). Although no marked effect of hole size on performance was noted, there are limits on the size that can be used. If small holes are used, fuel cannot be supplied over the complete range of operation of an engine without excessive fuel system pressures, or if the holes are very large, performance will probably decrease and vapor-lock problems will increase. Similarly, there are size limits for the fixed-area spray nozzles used in some configurations. For example, the fixed-area nozzle of combustor model 34 was too small to permit operation over the complete range of engine conditions, whereas the large nozzle in combustor model 42 allowed combustor operation at high fuel-air ratios (fig. 9) but provided insufficient atomization at low fuel flows. It was found that for the experimental combustor configurations investigated, air and mechanical atomization of the fuel gave approximately equal performance; the best performing models (29 and 46) used a combination of the two. These results suggest the use of primary air to aid atomization of poorly developed sprays now obtained with conventional fixed-area spray nozzles at low fuel flows. Photographs of liquid sprays obtained in a tubular turbojet combustor (ref. 8) are further evidence of the extent to which air flows may aid atomization. Rough burning in the variable-area combustor (table II) usually occurred at lean primary fuel-air ratios although occasionally it would occur at the rich end. In model 42, with the large fixed-area nozzle, the burning was very rough probably because of the poor atomization. The rough burning encountered in the best models (29 and 46) appeared to be associated with the use of fuel dams, which may have influenced the fuel preparation or the air-flow patterns in the primary zone. Air-flow patterns. - The use of baffles in the primary zone markedly affected combustion efficiency (fig. 10). The slotted-disk baffle (model 20) and the V-gutter baffle (model 21) were designed to increase turbulence in the primary zone. The difference in performance may be accounted for by the different degrees of turbulence created by the two baffles. The plain-disk baffle (model 25) was designed to promote reverse flow in the center of the combustor primary zone. A small fuel spray was required inside the baffle to provide a hot piloting region. Additional liner holes and fuel dams were required to further promote reverse flow and mixing of the fuel and air in the primary zone to achieve the high combustion efficiency of model 29. The results obtained with the variable-area combustor models investigated indicate that both air-flow patterns and fuel introduction affect the results obtained and that both must be varied to achieve the optimum configuration. The best models (29 and 46) were developed by this technique. Control system. - The over-all fuel-air ratios (100-percent combustion efficiency assumed) required for operation of one current turbojet engine at a flight Mach number of 0.6 are presented in figure 14. Higher fuel-air ratios are required at high engine speeds but they occur at lower fuel-flow rates as altitude is increased. The shape of the curves also changes with flight speed. The design principle of the variable-area combustor is to increase primary-air flow with increase in these over-all fuel-air ratios to maintain primary-fuel-air ratio near optimum values. No single engine variable shown in figure 14 (fuel flow, engine speed, altitude, or flight speed) can theoretically be used as a precise signal source to actuate the primary-air-flow control mechanism if the variable-area design principle is to be used in an engine. Such a precise control signal would have to be obtained from a combination of engine variables; such as fuel flow and combustor inlet-air density, or engine speed, altitude, and flight speed. 3553 The data presented for several models of the experimental variablearea combustor show that maximum combustion efficiency is obtained only when the proper amount of primary air is provided; however, in some models maximum efficiency is obtained over a considerable portion of the fuel-air-ratio range at one primary-air-flow setting. This suggests the possibility of a two- or three-position control for primary-air setting instead of continuous control or use of a single variable such as engine speed to provide a signal source. The off-design performance may not be seriously lowered by this method. Figure 15 illustrates one possible method for utilizing a control signal to vary the primary-air openings in the combustor. The bellows assembly is linked to the throat section by the movable sleeve. The control pressure signal acts on the bellows area to adjust the throat section and maintain the optimum quantity of primary-air flow. #### Performance of Best Variable-Area Combustor The combustion-efficiency performance of model 29 variable-area combustor is compared with that of several other experimental combustors (refs. 5, 9, and 10) and with a reference production combustor, all of approximately the same nominal size, in figure 16. Two lines of constant combustor temperature rise are also shown in figure 16 to represent engine cruise operation (680° F) and maximum engine speed (1180° F) conditions. These lines show the increase in fuel-air ratio that is required when loss of combustion efficiency occurs. The data indicate, in general, that all the experimental combustors represented have efficiency levels near 90 percent at test conditions A and E (pressure, 15 in. Hg abs). Greater differences in
performance are exhibited at the more severe test condition B (pressure, 8 in. Hg abs); the efficiency of the prevaporizing combustor (ref. 9) was from 3 to 11 percentage points higher than that of the variable-area combustor. It is also noted in figure 16 that all the experimental combustors operated with efficiencies higher than that of the reference production combustor, particularly at lean fuel-air ratios and at low pressures. The efficiency of model 29 was as much as 25 percent higher than that of the reference production combustor at the engine cruise conditions. At maximum engine speed conditions, however, the efficiency of model 29 was about 3 percent lower. All the experimental combustors were, however, designed without regard for other combustion-chamber problems such as durability, carbon deposition tendencies, and ease of manufacture. The range of fuel-air ratios over which model 29 would operate was only slightly greater than that of the reference combustor (fig. 16). Modification of the fuel-introduction system of model 29, however, resulted in a configuration (model 46) that operated at fuel-air ratios from 0.007 to 0.041 at test condition B (fig. 11(c)). This operating range is about three times that of the reference combustor (0.014 to 0.027) at the same test condition. The combustion efficiency of model 46 was about 3 to 5 percent lower than that of model 29 over much of the operating range. The fact that all the experimental combustors represented in figure 16 have approximately the same performance indicates that combustor performance may be limited by the size of the combustor. Data obtained with combustors of different size substantiate this possibility. A relation between combustion efficiency and combustor size, as expressed by the hydraulic radius of the combustor liner at the point where the undisturbed fuel spray strikes the liner walls, is presented in reference ll. The comparison of different combustors was made at operation conditions of equal severity as expressed by the parameter $V_{\rm r}/P_{\rm i}T_{\rm i}$ (where $V_{\rm r}$ is the combustor reference velocity, calculated from inlet density, mass-flow rate, and maximum combustor cross-sectional area, ft/sec; $P_{\rm i}$ is the combustor-inlet static pressure, lb/sq ft abs; and $T_{\rm i}$ is the combustor-inlet temperature, $O_{\rm R}$). Values of combustion efficiency and hydraulic radius for several experimental and production combustors, including those of reference 11, are presented in table III for two values of the severity factor $(V_r/P_iT_i$ equal to 100 and 248×10⁻⁶). The combustion-efficiency data shown in table III were obtained from the faired curves of reference 12 (based on the reciprocal of $V_r/P_i T_i$) and from the other reference sources at a combustor temperature rise of 680° F, which is representative of the current requirement for engine cruise operation. At the high value of V_r/P_iT_i , the performance is also shown for a temperature rise of 1180° F, which represents the requirements for maximum engine speed. These data are plotted in figure 17. The major objective of the experimental combustors was high combustion efficiency at low pressures and the results (fig. 17) show that most of these combustors have efficiencies well above the production combustors at both values of V_r/P_iT_i . The curve faired through the experimental data for combustors having the highest efficiencies suggest that the maximum performance attainable is limited by the size of the combustor. The variable-area combustor data point is near the upper curve at both severity factors; thus its performance may also be limited by its size. The lower production combustor curve in figure 17(a) was obtained from reference 11. general, for both production and experimental combustors, efficiency increases with increase in hydraulic radius. The curves indicate that a hydraulic radius of 2.0 inches or greater is required to achieve 100percent efficiency at the lower severity factor with the fuels and equipment now being used. In figure 17, the scatter of the data is greater at the more severe condition, which indicates the difficulty of achieving high efficiency at high values of V_r/P_iT_i . The effect of combustor length is not considered here and may account for some of the spread of the data. The effect of combustor temperature rise on combustion efficiency is illustrated in figure 17(b) by the tailed symbols. In general, the efficiency decreased from 8 to 14 percentage points as the temperature rise increased from 680° F (upper faired curve) to 1180° F. Data for a similar increase in temperature rise was available for only one production combustor (table III). This combustor showed an increase in efficiency from 57 to 71 percent for the increase in temperature rise. Its performance was thus close to the best of the experimental combustors of the same nominal size at the higher value of temperature rise. The decrease in efficiency with the decrease in combustor size is not yet well understood. Some possible factors are wall quenching effects, fuel impingement on the walls, or fuel and air mixing limitations due to combustor size. Pressure loss. - It is shown (fig. 12) that the pressure drop could be decreased with increased density ratio (or temperature rise) when the primary-air openings were varied for maximum combustion efficiency. If continuous control of the primary-air areas were used instead of stepwise changes, it appears possible that the combustor pressure loss could be maintained at a nearly constant value over the complete range of fuelair ratios. The pressure losses of the variable-area combustor investigated were higher than current practice (isothermal pressure drop of a representative production combustion is 12.0). Nevertheless, it is believed that proper redesign of the front end of the combustor would result in marked reductions in pressure loss. Temperature profile. - The data presented indicate that it is possible to obtain a flat temperature profile even though all the secondary air enters in only the last 5 inches of the liner. Since all the fuel and primary air enters at the upstream end of the combustor liner, a relatively uniform temperature profile is probably achieved by the time the hot gases reach the secondary-air slots. It is believed that control of combustor-outlet temperature profile could be attained by simple changes in the secondary-air openings. #### CONCLUDING REMARKS Variable primary-air flow has been shown to be another method of extending the rich limit of combustion in addition to fuel staging; however, either method involves a more complex combustor design and a more complex control system to regulate the new variable. This complexity must be weighed against possible gains that the data indicate. The major advantage of the variable-area combustor was the extension of high efficiency over greater fuel-air-ratio ranges. The combustor failed, however, to perform with efficiencies much higher than 90 percent, which was attributed to the small size of the combustor. #### SUMMARY OF RESULTS An investigation was conducted with experimental combustor designs incorporating a means of varying the primary-air flow. The performance of the best configurations at high-altitude operating conditions are summarized in the following paragraphs. The values quoted for simulated flight performance refer to combustor operating conditions in a typical 5.2-pressure-ratio turbojet engine at a flight Mach number of 0.6. - 1. The primary-air flow markedly affected combustion efficiency. Maximum efficiency was obtained with increased primary-air flow as overall fuel-air ratio was increased. - 2. Combustion efficiencies obtained were as high as 89 percent at cruise speed at 56,000 feet and as high as 82 percent at 70,000 feet. At the cruise condition, the efficiencies of the best experimental model were as much as 25 percent higher than those of a reference production combustor of equal size. At full-rated engine speed, however, the efficiencies of the experimental model were 3 percent lower. - 3. The range of fuel-air ratios over which the combustor would operate without blow-out was increased with use of variable air admission. At the 70,000-foot condition, the fuel-air-ratio range of one combustor model (model 46) was three times the range of a reference production combustor. - 4. The increase in combustor pressure loss with increase in combustor temperature rise was reduced when variable primary-air admission was used. The pressure-loss level, however, was higher for the models investigated than for current production combustors. Lewis Flight Propulsion Laboratory National Advisory Committee for Aeronautics Cleveland, Ohio, February 14, 1955 #### REFERENCES - 1. McCafferty, Richard J.: Effect of Fuels and Fuel-Nozzle Characteristics on Performance of an Annular Combustor at Simulated Altitude Conditions. NACA RM E8CO2a, 1948. - 2. Zettle, Eugene V., and Mark, Herman: Effect of Axially Staged Fuel Introduction on Performance of One-Quarter Sector of Annular Turbojet Combustor. NACA RM E53A28, 1953. - 3. Scull, Wilfred E.: High-Altitude Performance of 9.5-Inch-Diameter Tubular Experimental Combustor with Fuel Staging. NACA RM E54A06, 1954. - 4. Joyce, J. R.: Methods of Atomizing Liquid Fuel. Jour. Inst. Petroleum, vol. 39, no. 350, 1953, pp. 57-71; discussion, pp. 71-81. - 5. Butze, Helmut F., and Jonash, Edmund R.: Turbojet Combustor Efficiency with Ceramic-Coated Liners and with Mechanical Control of Fuel Wash on Walls. NACA RM E52I25, 1952. - 6. Turner, L. Richard, and Bogart, Donald: Constant-Pressure Combustion Charts Including Effects of Diluent Addition. NACA Rep. 937, 1949. (Supersedes NACA TN's 1086 and 1655.) - 7. Mark, Herman, and Zettle, Eugene V.: Effect of Air Distribution on Radial Temperature Distribution in One-Sixth Sector of Annular Turbojet Combustor. NACA RM E9122, 1950. - 8. Straight,
David M., and Gernon, J. Dean: Photographic Studies of Preignition Environment and Flame Initiation in Turbojet-Engine Combustors. NACA RM E52Ill, 1953. - 9. Butze, Helmut F.: High-Altitude Performance of an Experimental Tubular Prevaporizing Combustor. NACA RM E54IlO, 1954. - 10. Dittrich, Ralph T.: Low-Pressure Performance of Different Diameter Experimental Combustor Liners. NACA RM E53L16a, 1954. - 11. Norgren, Carl T., and Childs, J. Howard: Effect of Liner Air-Entry Holes, Fuel State, and Combustor Size on Performance of an Annular Turbojet Combustor at Low Pressures and High Air-Flow Rates. NACA RM E52J09, 1953. - 12. Childs, J. Howard: Preliminary Correlation of Efficiency of Air-craft Gas-Turbine Combustors for Different Operating Conditions. NACA RM E5OF15, 1950. - 13. Sobolewski, Adam E., Miller, Robert R., and McAulay, John E.: Altitude Performance Investigation of Two Single-Annular Type Combustors and the Prototype J-40-WE-8 Turbojet Engine Combustor with Various Combustor-Inlet Air Pressure Profiles. NACA RM E52J07, 1953. - 14. Hibbard, Robert R., Metzler, Allen J., and Scull, Wilfred E.: Low-Pressure Performance of Experimental Prevaporizing Turbular Combustor Using Approximately Stoichiometric Admission of FuelAir Mixture into the Primary Zone. NACA RM E54F25a, 1954. - 15. Norgren, Carl T., and Childs, J. Howard: Performance of an Annular Turbojet Combustor Having Reduced Pressure Losses and Using Propane Fuel. NACA RM E53G24, 1953. TABLE I. - FUEL ANALYSIS | Fuel Properties | MIL-F-5624B (JP-4)
(NACA fuel 52-53) | |----------------------------------|---| | A.S.T.M. distillation D86-46, OF | | | Initial boiling point | 136 | | Percent evaporated | | | 5 | 183 | | 10 | 200 | | 20 | 225 | | 30 | 244 | | 40 | 263 | | 50 | 278 | | 60 | 301 | | 70 | 321 | | 80 | 34.7 | | 90 | 400 | | Final boiling point | 498 | | Residue, percent | 1.2 | | Loss, percent | 0.7 | | Aromatics, percent by volume | | | A.S.T.M. D875-46T | 8.5 | | Silica gel | 10.7 | | Specific gravity | 0.757 | | Viscosity, centistokes at 100° F | 0.762 | | Reid vapor pressure, lb/sq in. | 2.9 | | Hydrogen-carbon ratio | 0.170 | | Net heat of combustion, Btu/lb | 18,700 | • TABLE II. - EXPERIMENTAL DATA | Run | Combus-
tor
orank
setting | Combustor-
inlet to-
tal pres-
sure, P ₁ ,
in. Hg abs | Combustor-
inlet to-
tel tem-
perature,
Ti,
Op | Air-
flow
rate,
lb/sec | Air-flow
rate per
unit
area,
lb/(sec)
(sq ft) | Combustor reference velocity, V _r , ft/sec | flow | Fuel-
air
ratio | Hean
combustor-
cutlet to-
tal tem-
perature, | Mean
combus-
tor tem-
perature
rise,
Op | Combus-
tion ef-
ficiency,
percent | Total
pressure-
loss
through
combustor,
in. water | Remarks | |---|------------------------------------|--|---|--|--|---|--|--|--|---|--|--|--| | | | | | | | _ | 1 10 | | | | | | | | 710
711
712
713
714 | | 7.9
7.9
8.0 | 268
265
272
266
271 | 0.397
.395
.396
.397 | 1.487
1.480
1.484
1.487
1.476 | 103.4
102.5
102.5
101.9 | 28.7
26.0
22.5
29.6
28.7 | 0.0201
.0183
.0158
.0207 | 1185
1150
1075
1200
1225 | 917
885
803
934
954 | 65.7
89.2
72.0
65.1
68.1 | | | | 715
716
717 | | | 271
270
272 | .398
.403
.404 | 1.490
1.509
1.514 | 102.8
103.9
104.6 | 31.5
35.0
37.0 | .0220
.0241
.0255 | 1255
1240
1220 | 984
970
948 | 65.1
58.7
54.4 | === | (a.) | | 718
719
720
721
722
723
725
726
727
728
729 | 5 | 5.0
8.1
8.2
7.9
5.0
7.9
5.0
7.9 | 268
270
268
268
266
265
276
286
270
274
264 | .405
.597
.402
.599
.400
.598
.398 | 1.517
1.487
1.505
1.495
1.499
1.490
1.490 | 103.9
102.4
102.1
102.4
104.0
101.9
102.2
102.1
103.9
103.2
101.8 | 51.5
48.0
46.5
43.5
40.5
38.0
34.7
31.7
26.4
25.0 | .0553
.0344
.0321
.0303
.0272
.0272
.0242
.0221
.0198
.0187 | 1210
1240
1350
1355
1280
1320
1270
1240
1205
1170
1090 | 944
970
1062
1059
1014
1055
994
974
974
896
826 | 40.1
42.3
49.5
52.1
53.4
57.2
60.0
63.9
68.8
72.8 | 15.0
15.1
15.1
12.6 | (b) | | 730
731
732 | | 8.0
5.0
 | 262
269
 | | | 101.5
102.5 | 20.0
35.2
37.7 | .0139
.0246
.0263 | 1005
1280
—— | 743
1011 | 74.5
60.4 | 12.5
12.8
 | (a) | | 733
734
735
736
737
737 | 5 | 8.0
6.1
8.0 | 266
269
265
264
266
268 | -398 | 1.491 | 102.1
102.5
100.7
101.8
102.1
102.4 | 43.6
40.0
46.5
49.1
47.6
52.0 | .0304
.0279
.0324
.0342
.0352
.0362 | 1340
1325
1330
1250
1270
1210 | 1074
1056
1065
986
1004
942 | 52.7
56.0
49.2
43.1
45.2
39.1 | 11.5
11.5
11.4
11.5
11.6
11.6 | | | 739
740
741
742
743 | 6 | 8.0
8.1
8.0
8.0 | 254
272
270
266
266 | .397
.395
.397
.397
.396 | 1.487
1.479
1.487
1.487
1.483 | 101.6
102.1
101.1
102.1
101.6 | 52.0
59.5
45.2
48.4
53.9 | .0364
.0278
.0316
.0338
.0378 | 1325
1400
1470
1360
1320 | 1061
1128
1200
1092
1054 | 44.0
60.4
57.2
48.6
42.4 | 11.2
11.0
11.1
11.2
11.2 | { b } | | 744
745
746
747
748
749 | 2.5 | 8.0
7.9
8.0
7.9 | 272
270
270
264
268
272 | .398
.395 | 1.491
1.479 | 105.0
105.1
101.9
101.0
101.6
105.4 | 34.9
38.7
47.0
53.0
29.8
25.4 | .0244
.0272
.0331
.0232
.0210 | 1260
1180
1070
1280
1250
1185 | 988
890
800
1016
982
913 | 59.4
48.0
35.9
63.9
68.0
73.3 | 12.0
11.8
11.8
11.6
11.7
11.6 | | | 750
751
752
753
754 | , | 15.1
15.1 | 271
270
272
271
270 | .573

.570 | 2.146

 2.135 | 78.93
78.82
79.04
78.00
77.89 | 51.2
47.5
43.4
46.0
55.7 | .0248
.0230
.0211
.0224
.0272 | 1595
1525
1450
1500
1690 | 1324
1255
1178
1229
1420 | 79.5
81.0
82.2
80.7
78.9 | 15.8
15.6
15.4
15.2
15.4 | | | 755
756
757
758 | | 15.0 | 268
265
270
272 | | | 78.20
77.67
78.41
78.63 | 38.5
35.7
35.0
29.0 | .0192
.0174
.0161
.0141 | 1390
1295
1230
1140 | 1122
1030
960
868 | 84.8
85.2
85.4
87.0 | 12.6
12.4
12.4
12.2 | (A)
(A)
(A)
(A)
(A)
(A)
(A)
(A)
(A)
(A) | | 759
760
761
762
763 | 5 | 15.0
15.0
15.1
15.0
14.9 | 271
272
267
272
264 | .570
.565
.570 | 2.135
2.116
2.135 | 78.29 | 43.1
46.2
51.0
57.3
40.0 | .0210
.0225
.0249
.0281
.0195 | 1460
1540
1640
1740
1410 | 1189
1268
1373
1468
1146 | 83.1
83.2
82.6
79.0
85.6 | 11.0
11.2
11.5
12.2
10.8 | (b) | | 764
765
766
767 | 10 | 15.0 | 264
270 -
267
266 | .570 | 2.135 | 78.41 | 39.5
35.5
32.5 | .0192
.0175
.0158 | 1395
1290
1205
1415 | 1131
1020
838
1149 | 85.5
84.8
84.5 | 10.8
10.5
10.2
10.8 | (b) | | 768
769
770
771 | Ĭ | | 271
272
269
265 | .565 | 2.116 | | 35.5
44.9
49.7
54.9 | .0173
.0218
.0242
.0270 | 1300
1510
1620
1730 | 1029
1258
1351
1465 | 85.6
83.5
83.1
82.0 | 10.7
10.9
11.0
11.2 | 20000 | | 772
773
774
775
776 | | 15.1
15.0 | 271
268
267
271
256 | -735 | 2.753 | 100.6 | 50.1
48.3
45.8
39.2
54.4 | .0190
.0175
.0168
.0148 | 1375
1310
1245
1185
1075 | 1104
1042
978
914
809 | 84.7
85.8
84.5
87.5
87.3 | 21.2
21.4
21.2
20.9
20.5 | | | 777
778
779
780 | | | 264
270
271
268 | -750
-755
-750
-755 | 2.754
2.753
2.754
2.753 | 101.1
100.8
100.9 | 51.7
85.2
61.6
65.5 | .0121
.0208
.0235
.0248 | 1025
1455
1525
1550 | 761
1185
1254
1282 | 88.0
83.2
79.2
77.0 | 20.0
21.7
22.1
22.3 | | | 781
782
783
784
785
786
787 | 5 | 15.0 | 266
264
269
265
272
267
266 | .730
.735
.730
.735 | 2.754
2.755
2.754
2.755
2.755 | 100.3
100.3
100.4
101.4
100.7 | 65.2
59.1
52.8
48.1
44.9
57.9
40.7 | .0248
.0223
.0200
.0182
.0170
.0145
.0156 | 1625
1550
1455
1360
1290
1135
1200 | 1357
1286
1188
1095
1018
868
934 |
81.8
85.0
86.3
87.0
86.1
85.5
85.2 | 19.1
18.7
18.0
18.1
18.1
17.3
17.3 | (b) | | 788
789
790 | 10 | 15.0 | 272
270
268 | .725
.730
.735 | 2.715
2.734
2.755 | 99.99
100.4 | 56.5
61.3
47.1 | .0213
.0233
.0178 | 1470
1580
1225 | 1198
1310
957 | 82.6
83.5
77.1 | 17.8
18.4 | {e
e} | | 791
792
793
794
795 | Î | 15.1
15.1
14.9
14.9
15.0 | 271
266
269
270
266 | .980
.965
.965
.950
.955 | 3.614
3.614
3.558
3.577 | 133.4 | 51.3
56.8
62.3
43.9
40.4 | .0149
.0163
.0179
.0128
.0117 | 1160
1210
1280
1060
995 | 889
944
991
790
729 | 84.6
82.5
79.5
86.4
66.7 | 37.2
37.8
 | | Blow-out. Brough burning. CVery rough burning. | Run | Combus-
tor
crank
setting | Combustor-
inlet to-
tal pres-
sure, P ₁ , | Combustor-
inlet to-
tal ten-
perature, | Air-
flow
rate,
lb/sec | Air-flow
rate per
unit
area, | Combustor reference velocity, V _r , | Fuel-
flow
rate,
lb/hr | Fuel-
air
ratio | Mean
combustor-
cutlet to-
tal tem- | Mean
combus-
tor tem-
perature | Combus-
tion ef-
ficiency,
percent | Total
pressure-
loss
through | Remarks | |------------|------------------------------------|--|--|---------------------------------|---------------------------------------|--|---------------------------------|-----------------------|--|---|---|---------------------------------------|------------------| | i | | in. Hg abs | T ₁ , | | (sq ft) | ft/sec | | | perature, | perature
rise,
F | | ocmbustor,
in. water | | | | | | | | · · · · · · · · · · · · · · · · · · · | Nodel | 20 . | | - | | | | | | 796 | o i | 8-0 | 268 | 0.401 | 1.502 | 103.2
102.9 | 29.0
26.0 | 0.0201 | 1265 | 997 | 71.8 | | | | 797
798 | | | 266
270 | | | 105.4 | 22.3 | .0180
.0153 | 1235
1100 | 969
830 | 77.3
76.8 | | (a,b) | | 799
800 | | 8.1 | 267
270 | | <u> </u> | 103.0
102.2 | 22.2
25.7
28.7 | .0178
.0199 | 1190
1235 | 923
965 | 74.3
70.1 | 12.8
12.7 | | | 801 | 10 | 8.1
8.1 | 266
270 | .401 | 1.502 | 101.6 | 32.2 | .0223 | 1265
1290 | 1019
1020 | 66.5
67.6 | 12.9
9.6 | (b) | | 808 | 1 | Ţ | 273
272 | 1 -1- | | 102.6
102.4 | 35.5
38.4 | .0246
.0266 | 1400
1445 | 1127
1173 | 67.6
65.6 | 9.9 | (-, | | 810
811 | | 8.0
7.8 | 273
272 | .402 | 1.506 | 103.9 | 41.2
31.7 | .0286 | 1490
1280 | 1217
1008 | 53.9
57.0 | 10.4 | | | 822 | ρ | 14.9 | 2 71 | .741 | 2.775 | 102.7 | 24.6 | .0092 | 870 | 599 | 89.3 | 20.4 | | | 823
830 | 5 | 15.0
15.0 | 268
270 | .741
.740 | 2.775
2.172 | 101.8 | 21.4 | .0080 | 790
1540 | 522
1270 | 88.9
82.6 | 19.8
18.7 | | | 853 | | 13,0 | 270 | .739 | 2.768 | 101.7 | 53.3
47.8 | .0200 | 1440
1345 | 1170
1077 | 85.4
86.4 | 18.0 | | | 834
835 | | | 268
263 | .739
.740 | 2.772 | 100.8 | 42.6 | .0160 | 1235 | 972 | 86.8 | | | | 836
837 | | 1 | 269
269 | | <u> </u> | 101.7
101.5 | 37.9
33.0 | .0143
.0124 | 1160
1060 | 891
792 | 88.2
89.4 | 16.9 | | | 838
844 | 10 | 15.0 | 270
262 | .739 | 2.768 | 101.7
101.0 | 25.7
64.2 | .0097 | 900
1595 | 630
1333 | 89.5
82.5 | 17.4 | | | 845
846 | Ĩ | 13,0 | 269
265 | '']- | 2.113 | 101.9 | 71.Q
75.2 | .0266 | 1710
1780° | 1441
1515 | 81.7
81.7 | | (a) | | 040 | | <u>`</u> | 200 | ــــنــــا | | | 1 21 | 10202 | | 2012 | | | | | 867 | Ŷ | 8.0 | 273 | 0.396 | 1.483 | 102.6 | 23.0
20.0 | 0.0161 | 1030
985 | 757 | 66.4 | 13.0 | | | 868 | | 8.0
8.1 | 266
265 | | | 101.6
100.2 | 25.5 | .0140
-0179 | 1110 | 719
845 | 71.8
67.3 | 12.8 | | | 870
871 | | 8.0
8.0 | 266
276 | .597 | 1.487 | 101.6
105.2 | 26.£
30.£ | .0199
.0216 | 1160
1195 | 894
919 | 61.5
61.5 | 15.2 | | | 872
877 | | 8.0
15.0 | 266
270 | .597
.742 | 1.487 | 101.8
102.1 | 34.1
37.9 | .0258
.0142 | 1175
1120 | 909
850 | 55.4
84.6 | | {b}
b} | | 878
879 | | 150 | 272
272 | .741
.740 | 2.775
2.772 | 102.2 | 35.9 I | .0127 | 1050 | 778
725 | 85.8
87.5 | 21.1 | { š } | | 880 | 1 | 14.9 | 264 | .759 | 2.768 | 101.5 | 30.5
29.0 | 0109 | 960 | 696 | 88.5 | 21.0 | | | 881
882 | 5 | 15.2
15.0 | 269
271 | .740
.741 | 2.772
2.775 | 100.3
102.1 | 45.4
46.6 | .0163 | 1235
1290 | 966
1019 | 84.7
83.5 | 17.2 | | | 883
884 | | ' | 272
272 | .740
.741 | 2.772
2.776 | 102.1
102.2 | 49.9
53.6 | .0187 | 1335
1410 | 1083
1138 | 83.7
82.7 | | | | 885
886 | , , , | | 264
270 | .741
.740 | 2.775
2.772 | 101.1 | 56.6
61.6 | .0212 | 1460
1540 | 1196
1270 | 82.4
81.4 | 18.5 | | | | - | | | | | | 1 24 | | | | | | | | 937 | ٩ | 15.1 | 266 | 0.742 | 2.779 | 100.8 | 46.5 | 0.0174 | 1310 | 1044 | 86.5 | 19.2 | | | 938
939 | | 15.0
15.1 | 267
270 | | | 101.7
101.4 | 42.0
40.0 | .0157
.0150 | 1240
1200 | 975
930 | 88.2
88.4 | | 45.3 | | 940
941 | | 15.1
15.0 | 269
267 | .740
.740 | 2.772
2.772 | 101.4 | 36.5
49.7 | .0137
.0167 | 1130
1390 | 861
1125 | 88.6
97.1 | 18.6 | (b) | | 942
943 | 1 | 15.1
15.0 | 269
268 | .750
.747 | 2.609
2.798 | | 55.2
57.5 | .0205 | 1460
1500 | 1191
12 5 2 | 85.2
84.7 | | | | 944 | ş | 15.0 | 272 | .745 | 2.790
2.809 | 102.8 | 57.8 | .0215
.0228 | 1525
1585 | 1253
1317 | 85.7
85.5 | 19.5 | | | 945
946 | | 15.0
15.1 | 268
262 | .750 | 2.603 | 101.4 | 61.6
65.5 | .0242 | 1640 | 1378 | 84.7 | | | | 947
948 | ŧ | 15.0
15.0 | 267
270 | | | 102.7
103.2 | 68.4
70.5 | .0253
.0261 | 1670
1700 | 1403
1450 | 63.0
62.5 | | | | 949 | 10 | 15.1 | 272 | .745 | 2.790 | | 70.8 | .0264 | 1710 | 1438 | 82.1 | 19.7 | (e) | | 950
951 | Ŷ | 8.0 | 268 .
274 | .396
.397 | 1.483
1.487 | 105.0 | 38.7
34.9 | .0272 | 1300
1310 | 1052
1056 | 56.1
62.3 | 12.2 | | | 952
953 | | | 264
264 | .398
.398 | 1.463 | 101.3 | 31.4
29.5 | .0220 | 1240
1190 | 976
926 | 64.3
65.2 | | | | 954
955 | | | 269 | 396
396 | 1.483 | | 26.3
37.1 | .0185 | 1300 | 1051 | 58.3 | 12.5 | (d) | | 957 | 4 | 8.0 | 273 - | .398 | 1.491 | 103.1 | 44.7 | .0312 | 1400 | 1127 | 54.2 | 11.4 | (4)
(1) | | 958
960 | | 7.9 | ; | -398 | 1.491 | | 40.7
50.2 | .0284
.0351 | 1300° | | | | \ a } | | 961
962 | { | 8.1
8.0 | 270
273 | -397
-396 | 1.487
1.483 | | 45.8
41.5 | .0328 | 1410
1370 | 1140
1097 | 52.5
56.2 | | | TABLE II. - Continued. EXPERIMENTAL DATA ÿ aNear blow-out. bRough burning. CApproximate temperature just before blow-out. dBlow-out. encisy combustion. Somewhat unstable. TABLE II. - Continued. EXPERIMENTAL DATA | Run | Combus-
tor
crank
setting | Combustor-
inlet to-
tal pres-
sure, P ₁ ,
in. Hg abs | Combustor-
inlet to-
tal tem-
perature,
T ₁ ,
o _p | iir-
flow
rate,
Ib/sec | Air-flow
rate per
unit
area,
lb/(sec)
(sq ft) | Combustor
reference
velocity,
Y _r ,
ft/sec | Fuel-
flow
rate,
lb/hr | Fuel
air
ratio | Mean
combustor-
outlet to-
tal tem-
perature,
Og | Mean
combus-
tor ten-
perature
rise, | Combus-
tion ef-
ficiency,
percent | Total
pressure-
loss
through
combustor,
in. water | Remarks | |--|------------------------------------|--|--|--|--|---|--|---|---|--|--|--|---------------------------------------| | | Nodel 25 | | | | | | | | | | | | | | 990
994
995 | 00 | 8.0
15.0
8.0 | 270
272
271
275
267 | 0.396
.742
.395
.395
.394 | 1.483
2.779
1.479
1.479
1.476 | 102.1
102.4
102.0
102.6
101.2 | 0
0
44.4
29.5
26.5 | 0
0
0.0312
.0206
.0187 | 1100
1055
1010 | 0
0
829
780
743 | 39.3
54.3
56.5 | 9.9
16.9
12.0
11.6 | {a}
a} | | 996
997
998
999 | | | 272
268
270
270 | | | 101.9
101.4
101.6
101.6 | 23.8
22.0
19.5
42.0 | .0168
.0155
.0138
.0297 | 955
675
820
1120 | 683
607
550
850 | 57.5
54.8
55.5
42.2 | 11.8 | | | 1001
1007 | 5
5 | 8.1
8.0 | 274
268 | .393
.395 | 1.472
1.479 | 100.7
101.6 | 45.8
26.5 | .0324
.0187 | 13,60
960 | 1086
6 92 | 50.4
52.7 | 10.5
9.5 | | | 1010
1011
1012
1013
1014
1015 | 10 | 8.0 | 256
265
263
263
270
271 | .395
.394
.395 | 1.479 | 101.3
101.1
101.5
100.7
101.6
102.0 | 43.4
40.9
36.0
45.5
49.1
54.1 | .0306
.0288
.0254
.0321
.0347
.0380 |
1320
1305
1220
1360
1460
1505 | 1054
1039
951
1097
1190
1234 | 51.5
53.5
54.8
51.4
52.2
49.8 | 10.3 | (b) | | 1016
1017
1018
1019
1020
1021
1022 | | 14.9
14.9
15.0 | 269
269
272
266
269
269
269 | .755
.733
.755
.757
.740
.755
.735 | 2.753
2.745
2.753
2.760
2.772
2.753
2.753 | 101.7
101.4
101.4
101.1
101.7
101.0
101.0 | 48.1
44.4
40.4
55.8
32.5
46.8
52.6 | .0182
.0169
.0153
.0135
.0122
.0177
.0199 | 1210
1155
1075
985
915
1190
1285 | 941
886
803
717
646
921
1016 | 74.2
75.0
74.4
74.4
73.5
74.6
74.0 | 19.5

19.6 | (A.A.A.) | | 1025
1026
1027
1028
1029
1031 | 5 | 15.0 | 267
264
268
270
267
273 | .757
.745
.757
.755
.742
.760 | 2.760
5.790
2.760
2.753
2.779
2.772 | 101.0
101.6
101.1
101.1
101.7
102.2 | 64.7
58.9
53.6
48.4
44.9
70.0 | .0243
.0220
.0202
.0183
.0168
.0263 | 1545
1445
1340
1240
1145
1630 | 1278
1181
1072
970
878
1357 | 78.0
79.0
77.2
76.4
74.4
77.6 | 18.1 | | | 1033
1034
1035
1036
1037
1038 | 10 | 15.0
15.0
14.9
15.0
14.9
15.0 | 269
263
268
268
271
272 | .740 | 2.772 | 101.7
100.8
102.2
101.5
102.6
102.4 | 77.9
81.3
73.4
67.1
61.3
55.2 | .0292
.0305
.0276
.0252
.0230 | 1795
1840
1720
1630
1510
1320 | 1526
1577
1452
1362
1239
1098 | 79.6
79.2
79.6
81.0
79.5
77.5 | 18.0

 | | | | | | | 2 - | | | 1 26 | | | | | | | | | Ĵ | 15.0
15.0
8.0 | 269
269
279 | 0.741
.928
.397 | 2.775
3.476
1.487 | 101.8
127.5
103.7 | Î | Î | == | Î | === | 16.7
30.0
10.1 | (a)
(a) | | 1042
1043
1044
1045
1050
1051 | 2.5 | 8.0
7.9
8.0 | 272
277
275
272
266
274 | .597 | 1.487 | 102.7
104.7
103.1
102.7
101.8
103.0 | 39.5
32.7
29.8
27.1
44.7
47.5 | 0.0277
.0228
.0209
.0190
.0513
.0534 | 1500
1370
1325
1220
1520
1480 | 1226
1093
1050
948
1254
1206 | 56.4
70.1
73.1
72.0
60.6
55.0 | 11.3 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 1054
1055
1056
1057
1058
1059 | 0 | 14.9
15.0
14.9
15.0 | 264
286
275
275
264
262 | .742
.742
.740
.740
.745
.740 | 2.779
2.779
2.772
2.772
2.790
2.772 | 101.9
101.5
102.9
102.2
101.6
100.7 | 48.5
44.7
40.7
57.1
32.5
29.8 | .0181
.0168
.0153
.0139
.0121
.0112 | 1530
1270
1185
1130
1020
975 | 1066
1004
912
857
756
713 | 85.2
86.0
84.8
87.0
87.0
88.5 | 19.5 | <u> </u> | | 1060
1061
1062
1063
1064
1065
1066 | () | 15.0
15.1
15.0 | 278
268
280
266
267
265
270 | .742
.740
.742 | 2.779
2.772
2.779
2.772 | 101.7
101.4
101.8 | 53.6
51.2
47.5
57.3
61.0
66.0
71.6 | .0201
.0192
.0178
.0214
.0228
.0247
.0269 | 1450
1390
1330
1510
1570
1640
1720 | 1152
1122
1050
1244
1303
1375
1450 | 84.0
84.8
85.4
85.3
84.5
83.2
81.5 | 21.0 | | | 1071
1072
1073 | P
I | 15.0
15.0
15.1 | 266
268
270 | .973
.965
.980 | 3.614
3.670 | 155.1
152.4
155.9 | 43.1
39.0
30.6 | .0125
.0112
.0087 | 1025
965
600 | 759
697
530 | 86.0
86.2
83.6 | === | | | 1074
1075
1076
1077
1078
1079 | 1.5 | 15.0
15.1
15.0 | 280
280
260
278
264
265 | .970
.980
.980
.970
.975 | 3.633
3.670
5.670
5.633
3.652
3.633 | | 58.7
51.8
45.2
64.9
71.6
76.6 | .0168
.0147
.0128
.0186
.0204 | 1270
1185
1980
1375
1435
1495 | 990
905
800
1097
1171
1230 | 84.6
87.5
87.5
85.6
83.8
82.6 | | | ⁸No burning. ^bRough burning ^cBlow-out. ^dVery rough burning. TABLE II. - Continued. EXPERIMENTAL DATA | Run | Combus-
tor
crank
setting | Combustor-
inlet to-
tal pres-
sure, Pi,
in. Hg abs | Combustor-
inlet to-
tal tem-
perature,
Ti,
op | Air-
flow
rate,
lb/sec | Air-flow
rate per
unit
area,
lb/(sec)
(sq ft) | velocity,
V _r ,
ft/sec | Fuel-
flow
rate,
lb/hr | Fuel
air
ratio | Mean
combustor-
cutlet to-
tal tem-
perature, | Mean
combus-
tor tem-
perature
rise, | Combus-
tion ef-
ficiency,
percent | Total
pressure-
loss
through
combustor,
in. water | Remarks | |--|------------------------------------|---|---|--|--|--|--|--|--|--|--|--|-------------------| | <u> </u> | , | | | | | Mod | | | 1 | | | | | | 1179
1180 | 0 | 8.0
15.0
15.0
8.0 | 271
266
263
266
267 | 0.398
.748
.965
.397
.395 | 1.491
2.801
3.614
1.487
1.479 | 102.8
102.3
131.5
101.8
101.4 | 35.2
30.6 | 0.0246
.0215 | 1425
1335 | 1159
1068 | 69.6
72.3 | 9.7
16.8
29.0
12.5 | (a)
(a) | | 1181
1182
1183
1184
1185 | | | 264
267
268
268
268 | .397 | 1.487 | 101.6
102.0
102.1
102.1
101.8 | 27.1
22.0
18.4
24.9
36.8 | .0189
.0154
.0129
.0174
.0257 | 1250
1110
1015
1195
1455 | 986
843
747
927
1189 | 74.9
77.5
81.2
76.1
68.5 | 11.5 | {b} | | 1186 | 1 | 1 | 269 | 700 | 1 | 102.3 | 42.0 | .0294 | 1445 | 1176 | 59.9 | | (0) | | 1187
1196
1197
1198
1199
1200 | 2.5 | 8.1
15.0 | 268
264
264
265
267
266 | .398
.737
.739
.740
.742
.745 | 1.491
2.760
2.768
2.772
2.779
2.790 | 101.1
100.5
100.8
101.1
101.7
101.2 | 55.5
41.8
57.7
54.4
29.8
24.9 | .0232
.0158
.0142
.0129
.0112
.0093 | 1300
1215
1135
1070
975
880 | 951
871
805
708
614 | 86.0
86.7
87.4
88.1
90.9 | 11.7 | (b) | | 1201
1202
1203
1204
1205 | | 15.0 | 263
266
266
264
266 | .743
.743
.742 | 2.783
2.783
2.779 | 101.2
101.7
101.5
101.2
101.5 | 20.9
32.7
45.2
48.6
53.1 | .0078
.0122
.0169
.0182
.0198 | 780
1035
1270
1335
14.0 | 517
769
1004
1071
1144 | 90.0
87.9
85.1
85.0
83.8 | 20.7 | | | 1217
1218
1219
1220
1221
1223 | 7.5 | 15.0 | 266
264
266
263
268
264 | .739
.742
.742
.745 | 2.768
2.779
2.779
2.790 | 101.1
101.2
101.5
101.5
101.9
101.6 | 74.4
74.4
79.5
68.5
59.4
59.2 | .0280
.0279
.0298
.0248
.0222 | 1720
1780
1875
1680
1550
1530 | 1454
1516
1609
1417
1284
1266 | 78.8
82.4
82.9
85.6
85.6
85.6 | 20.0 | (b)
(d)
(d) | | 1224
1225
1226 | | | 266
265
264 | .742
.741
.742 | 2.779
2.775
2.779 | 101.5
101.2
101.2 | 54.4
69.5
78.0 | .0204
.0261
.0292 | 1420
1690
1860 | 1154
1425
1596 | 62.8
82.3
85.5 | 17.9 | | | 1228
1229
1230
1231
1232 | .a . | 15.0 | 258
264
263
262
267 | .964
.963
.964
.963 | 3.610
3.607
3.610
3.607 | 152.2
131.4
131.3
131.0
131.9 | 48.1
44.1
40.4
56.0
31.7 | .0139
.0127
.0116
.0104
.0091 | 1120
1055
985
930
860 | 852
791
732
668
593 | 86.6
87.0
67.6
88.9
89.4 | 34.5 | (b) | | 1235
1254
1235
1236
1237
1238 | | 14.9
15.0 | 265
262
266
265
266
262 | .964
.963 | 3.610
3.607 | 131.6
132.0
131.8
131.6
151.8 | 27.8
23.5
50.7
57.4
60.5
63.4 | .0081
.0068
.0147
.0166
.0174
.0183 | 800
720
1155
1250
1290
1315 | 535
458
889
985
1024
1053 | 90.1
91.0
85.6
85.0
84.4
83.2 | | (b)
(b) | | 1240
1241 | 5 | 15.0
15.0 | 264
267 | .963 | 3.607
3.607
5.629 | 151.4
151.9
151.7 | 67.1
72.6
81.8 | .0193
.0209 | 1370
1445
1575 | 1108
1178
1309 | 83.0
82.4
82.7 | 31.8 | | | 1244
1245
1248
1249 | 10
10
15 | 15.1
15.0
15.0 | 266
262
266
264 | .969
.967
.963 | 5.622
5.607 | 151.6
151.8
151.4 | 85.8
94.0
101.8 | .0248
.0271 | 1650
1760
1670 | 1388
1494
1406 | 84.0
83.4
72.5 | | (b) | | 1250 | | <u> </u> | 267 | 1 | <u> † </u> | 131.9 | 85.2 | .0248 | 1650 | 1583 | 84.0 | | {d} | | 1505 | | 8.0 | 007 | 0.397 | 1.487 | 102.0 | 29.5 | 0.0207 | 1330 | 1063 | 74.8 | 13.2 | | | 1328
1328
1329
1330
1331 | 5 | | 267
270
27 <u>4</u>
270
269 | 0.357 | 1.407 | 102.4
103.0
102.4
102.3 | 35.0
35.4
37.9
42.0 | .0231
.0248
.0268
.0294 | 1380
1435
1535
1640 | 1110
1161
1265
1371 | 70.6
69.4
71.3
70.5 | === | (b) | | 1332
1334
1335
1336
1338 | | 8.1
8.0
8.0 | 262
262
269
262
271 | | |
100.0
101.5
102.5 | 45.9
27.1
25.6
20.6
24.6 | .0308
.0190
.0165
.0144
.0172 | 1600 ⁶
1270
1160
1000 ⁶
1190 | 1558
1008
891
758
919 | 66.0
78.5
78.8
71.8
76.2 | 13.0 | (a)
(a) | | 1339
1340
1341 | 10
10 | 8.0
8.0
8.1 | 266
266
264 | .397
.397 | 1.487
1.487 | 101.8
101.8
100.5 | 36.0
39.2
43.6 | .0252
.0274
.0306 | 1480
1585
1670 | 1214
1319
1406 | 71.5
72.1
69.8 | | (o) | | 1342
1343
1344
1346
1346 | 0 | 15.0
15.1
15.0 | 267
269
274
275
272 | .960
.975
.967
.960
.972 | 5.596
5.652
5.622
5.596
5.640 | 131.5
133.1
133.8
132.6
134.1 | 47.6
42.6
38.2
34.7
50.0 | .0138
.0121
.0110
.0100
.0086 | 1120
1050
970
905
820 | 853
761
696
632
548 | 87.4
67.6
88.1
86.9
67.4 | 37.8 | | | 1347
1348
1349
1350
1351 | | | 268
274
261
261 | .972
.967
.975
.975
.962 | 3.640
3.622
3.652
3.652
3.603 | 133.3
133.8
132.5
132.5 | 24.9
18.7
46.5
53.1
57.8 | .0071
.0054
.0132
.0151
.0167 | 740
640
1090
1195
1260 | 472
566
829
934 | 89.9
90.9
86.2
87.7
85.6 | 35.6 | (b,f) | Blow-out. dvery rough burning. eApproximate temperature just before blow-out. fixear blow-out. TABLE II. - Concluded. EXPERIMENTAL DATA | | | | | | | | | | | ALI DA | | | | |----------------------|------------------------------------|---|--|---------------------------------|---------------------------------------|---|---------------------------------|-------------------------|--|--|---|---------------------------------------|-------------------| | Run | Combus-
tor
orank
setting | Combustor-
inlet to-
tal pres-
sure, P1, | Combustor-
inlet to-
tal tem-
perature, | Air-
flow
rate,
lb/sec | Air-flow
rate per
unit
area, | Combustor
reference
velocity,
V _r , | Fuel-
flow
rate,
lb/hr | Fuel
sir
ratio | Mean
combustor-
outlet to-
tal tem- | Hean
eccibus-
tor tem-
perature | Combus-
tion ef-
ficiency,
percent | Total
pressure-
loss
through | Renarks | | | | in. Hg abs | o _F | | lb/(sec)
(sq ft) | ft/sec | | | perature, | rise, | | in. water | | | | - | | | | | Mod | el 41 | | • | | | | | | 1459
1460 | Ŷ | 8,0 | 264
272 | 0.391
.390 | 1.464 | 99.99
100.9 | 29.0
34.7 | .0247 | 1290
1435 | 1026
1163 | 72.3
69.6 | 11.2 | | | 1461 | ĺ | | 272
270 | .394
.394 | 1.476 | 101.9 | 38.1
30.5 | .0269
.0214 | 1485
1325 | 1213
1055 | 67.4
72.0 | 11.4 | | | 1464 | | 15.0 | 268
269 | -393
-967 | 3.622 | 101.1
152.9 | 26.5
45.4 | .0188
.0125 | 1210
1045 | 942
776 | 72.3
87.1 | 32.2 | (a,b) | | 1465 | | | 268
265 | -967
-962 | 3.622
5.605 | 132.7
131.4 | 38.1
35.7 | .0109 | 950
890 | 682
625 | 86.7
85.6 | | (ъ) | | 1467
1468 | | | 268
262 | .967
.969 | 3.622
3.629 | 152.7
131.8 | 48.3
51.5 | .0139
.0148 | 1125
1170 | 857
908 | 87.0
87.3 | === | | | 1469
1470 | | | 263
262 | | | 132.0
131.8 | 55.7
60.5 | .0160
.0173 | 1215
1250 | 952
988 | 85.0
81.9 | 34.6 | | | 1471
1472 | { | 1 | 267 | _ | | 132.7 | 67.3
29.2 | .0193
.0084 | 1260 | 993 | 74.1 | = | (b) | | | | | | | | Mode | 1 42 | | | | | | | | 1482
1483 | î | 15.0
15.1 | 256
270 | 0.970 | 3.633
3.652 | 130.9
133.2 | 60.0
65.5 | 0.0172
.0186 | 1240
1295 | 984
1025 | 82.C
79.4 | 34.9 | (a) | | 1484 | . | 15.0
15.0 | 264
267 | .972
.975 | 3.640
3.852 | 152.6
155.6 | 71.3
76.6 | .0204 | 1360
1400 | 1096
1133 | 78.1
78.0 | 37.0 | (3) | | 1486 | | 15.1
15.0 | 272
280 | .974
.965 | 3.648 | 135.5
134.6 | 79.5
85.6 | .0227 | 1450
1470 | 1178 | 78.5
71.6 | | (b)
(b) | | 1488
1489 | | | 266
260 | .975
.975 | 3.652
3.652 | 135.4
132.3 | 89.4
56.5 | .0255 | 1390 | 1124 | 65.3 | 38.3 | { d } | | 1490
1491 | · | | 267
265 | .735
.740 | 2.755
2.772 | 100.7
101.3 | 44.2 | .0167 | 1265
1370 | 1018
1104 | 87.5
86.1 | 20.1 | (b) | | 1492
1493 | | } | 270
266 | .745
.742 | 2.790
2.779 | 102.5
101.5 | 55.0
60.2 | .0205
.0225 | 1450
1540 | 1180
1274 | 84.3
83.5 | | (b) | | 1494
1495 | | 15.1
15.0 | 250
255 | .745
.742 | 2.790
2.779 | 100.4
99.97 | 56.5
72.6 | .0248 | 1650
1720 | 1370
1465 | 82.0
81.5 | 22.3 | | | 1496 | | | 268
256 | .743
.742 | 2.785
2.779 | 101.9
100.1 | 77.0
57.8 | .0288 | 1790
1505 | 1522
1249 | 80.6
84.9 | | , , l | | 1498 | <u> </u> | • | 258 | .750 | 2.809 | 101.5
Mode | 35.2
1 46 | .0131 | | | | <u> </u> | (c) | | 1555
1556 | Ŷ | 8.1
8.0 | 265
268 | 0.393 | 1.472 | 99.44
101.1 | 34.9
38.2 | 0.0247 | 1420
1500 | 1155
1252 | 69.0
68.0 | | (h) | | 1557
1558 | | | 274
269 | | | 101.9 | 41.5
45.0 | .0294 | 1580
1665 | 1306
1396 | 67.2
67.0 | | (b)
(b) | | 1560
1561 | | | 275
275 | 1 | 1 | 101.8 | 32.5
29.5 | .0250
.0209 | 1355
1260 | 1082
987 | 69.1
68.4 | | , | | 1562
1563 | | | 270
266 | .592
.592
.593 | 1.468
1.468
1.472 | 101.1 | 26.9
25.0 | .0190 | 1180
1095 | 910
829 | 68.5
72.2 | 10.9 | | | 1564
1565 | | 7.9
8.0 | 265
268 | .392 | 1.468 | 101.7 | 18.9 | .0134 | 960
960 | 695
692 | 72.5
69.5 | | | | 1566
1567 | | | 259 | .393 | 1.472 | 101.2
101.1 | 17.5 | .0124
.0112 | 900° | 631
580 | 70.8 | | | | 1568
1569 | | | 270
271
270 | .392 | 1.466 | 101.2 | 15.8
13.8
11.8 | .0098 | 760
660 | 489
390 | 71.4
68.3
63.2 | 10.3 | (6) | | 1570
1571 | | | 268
268 | .393
.392 | 1.472
1.468 | 101.1 | 11.2 | .0079 | 605
510 | 337
242 | 57.6
45.9 | | (a)
(a)
(b) | | 1576 | 2.5 | 8.05 | 268 | .392 | 1.468 | 100.2 | 49.4 | .0350 | 1740 | 1672 | 64.9 | | (b) | | 1578
1579 | 5
5 | 8.05
8.0 | 263
266 | -390
-391 | 1.461 | 99.03
100-3 | 53.9
58.1 | .0384 | 1750
1860 | 1487
1594 | 60.3
60.8 | === | { d } | | 1606
1607 | Ŷ | 15.0 | 268
265 | .983
.995 | 3.682
3.727 | 134.9
136.0 | 50.4
57.5 | .0142
.0161 | 1075
1170 | 907
905 | 79.8
80.5 | <u> </u> | ŀ | | 1608
1609 | | | 266
267 | 1.000 | 5.745
5.933 | 157.2
143.9 | 64.5
74.7 | .0179
.0198 | 1245
1395 | 977
1128 | 78.2
63.0 | <u></u> | | | 1610
1611 | | | 267
264 | .993
.997 | 3.719
3.734 | 136.0 | 80.5
88.7 | .0225 | 1505
1555 | 1258
1291 | 80.9
77.7 | <u></u> | (b) | | 1612a
1612b | | | 267 | .990 | 3.708
3.708 | 135.6 | 94.6
101.7 | .0265 | 1645 | 1378 | 77.9 | === | (b)
(c) | | 1613
1614 | | 14.9
15.0 | 265
266 | .987
.990 | 5.697
5.708 | 135.8
135.4 | 48.4
43.9 | .0136
.0123 | 1035
965 | 770
689 | 79.3
79.0 | == | | | 1615
1616 | | | 263
267 | | | 134.9
135.6 | 58.2
52.8 | .0107 | 905
830 | 642
563 | 82.5
83.8 | == | (b) | | 1617
1618 | | 14.8 | 267 | .992
.993 | 3.715
3.718 | 135.9 | 27.1
20.0 | .0076
.0056 | 745 | 478 | 85.5 | == | (a) | | 1619
1620 | | 15.0 | 268
265 | .782
.782 | 2.929 | 107.3 | 38.4
43.6 | .0156 | 1025 | 757
850 | 77.8
77.6 | | (b) | | 1621
1622 | | | 265
269 | . 785
. 783 | 2.940
2.933 | 107.2 | 48.9
54.7 | .0173
.0194 | 1205
1530 | 940
1061 | 77.9
79.1 | | { b } | | 1623
1624 | | | 267
268 | .780 | 2.921 | 106.8
107.0 | 61.0
66.5 | .0217 | 1460
1580 | 1193
1312 | 80.5
82.4 | 19.9 | (b) | | 1625
1626 | | | 268
263 | | | 107.0
106.3 | 71.3
76.5 | .0254
.0272 | 1655
1750 | 1587
1487 | 81.6
82.6 | === | {b} | | 1627
1628 | 5 | †
14.9 | 268
268 | .782
.780 | 2.929
2.92I | 107.3
107.7 | 78.9
79.2 | .0280 | 1805
1780 | 1537
1512 | 85.4
81.4 | | (b) | | 1629 | Ģ | 15.0 | 265 | .782 | 2.929 | 105.8 | 37.4 | .0133 | 1050 | 785 | 82.7 | | | | 1630
1631
1632 | | 15.0
14.9
15.0 | 263
268
268 | .780
.778
.782 | 2.921
2.914
2.929 | 106.3
107.5
107.3 | 31.7
26.8
21.7 | .0113
.0096
.0077 | 960
895
760 | 697
627
492 | 85.6
90.1
88.7 | | (p) | | 1633 | | 13,0 | 269 | .785 | 2.933 | 107.6 | 22.1 | .0079 | 755 | 456 | 83.6 | == | | | 1634
1635
1636 | | | 268
264
264 | .765
.780
.775 | 2.865
2.921
2.803 | 104.9
106.4
105.7 | 19.6
19.4
17.6 | .0071 | 700
670
575 | 432
406
311 | 82.3
79.3
68.0 | | (h) | | 1657 | ł | t | | .775 | 2.905 | | 16.1 | .0058 | | | | | {a}_ | | Syen | | | | | | | ORIO | | | | | | | Breen blow-out. bRough burning. OBlow-out. dwery rough burning. TABLE III. - DATA OF COMBUSTORS OF DIFFERENT SIZE | Refer- | | Combusto | or type | Dimens | ions | Com | bustion e | fficienc | y, perce | at | |-----------------------------------|------------------|------------------|-------------------|---|---|---|---|-------------------------------------|--|--| | ence | bus-
tor | Produc-
tion | Experi-
mental | Maximum
combustor | Hy-
draulic | V _r /P _i T _i = |
100X10-6 | v _r /P _i | r _i = 248 | ×10 ⁻⁶ | | | | | | cross-
sectional
area, | radius, | From
ref. 12 | Temper-
ature
rise, | From
ref. 12 | Temper-
ature
rise, | Temper-
ature
rise. | | | | | | sq in. | | (a) | 680° F | (a) | 680° F | 1180 ⁶ F | | 12 | A
B
C
D | X
X
X | x | 234.4
234.4
74.8
74.8 | 0.65
.76
1.13
1.13 | 64.0
64.0
69.0
79.5 | | (b)
(b)
(b)
(b) | | | | | E | X | | 58.5 | .59 | <<40.0 | | | | | | | F
G
H
J | X
X
X | X
X | 354.0
420.0
420.0
38.5
38.5 | .56
2.32
2.32
1.35
1.35 | 54.5
96.5
95.0
85.5
77.5 | | (b)
67.0
65.0
40.0
38.0 | | | | | K
L
M
N | x
x
x
x | | 69.4
69.4
69.4
103.8 | 1.79
1.79
1.79
2.38 | 83.0
83.5
76.0
68.0 | | 54.0
51.0
47.0
(c) | | | | 11
3
14
9
10 | -
-
-
- | | x
x
x
x | 420.0
70.9
69.4
38.5
38.5 | 2.32
2.06
1.62
1.40
1.39 | | 97.5
96.0 ^d
95.0
92.0
79.0 | | 82.0 ^d
77.0 ^d
87.5
(c)
(b) | 80.0 ^d
86.0
79.0
75.0
(b) | | 5
5
15
5
13
Variab | -
-
-
- | x
x
x | x
x | 38.5
38.5
420.0
69.4
922.0 | 1.35
1.35
2.00
1.79
2.50 ^d | | 78.0
66.0
100.0
80.0
85.0 | | (b)
57.0
91.0 ^d
70.0
(c) | (b)
71.0
87.0 ^d
(b)
(c) | | area,
model | 29 | | х | 38.5 | 1.36 | | 89.0 ^d | | 82.0 ^d | 68.0 | ^aReciprocal of V_r/P_iT_i used in ref. 12. bBeyond burning limit. CData not obtained. dEstimated value. Figure 1. - Experimental-combustor installation, including inlet and outlet ducting and instrumentation stations. Figure 3. - Mechanical positioner and basic dimensions of variable-area combustors investigated. 26 NACA RM E55BlO Figure 4. - Variation of primary-air areas with crank setting for variable-area combustor. Figure 5. - Experimental variable-area combustor configurations. Figure 5. - Continued. Experimental variable-area combustor configurations. Figure 5. - Continued. Experimental variable-area combustor configurations. (d) Combinations of various liner configurations and atomization methods. Figure 5. - Concluded. Experimental variable-area combustor configurations. Figure 6. - Variable-area pintle atomizer with spray distribution controlled by eight equal streaks. 32 (d) Test condition B: Pressure, 8 inches of mercury absolute; air flow, 1.48 pounds per second per square foot. Figure 7. - Combustion efficiency of model 10, a basic variable-area combustor, showing effect of variable primary-air flow. (c) Test condition B: Pressure, 8 inches of mercury absolute; air flow, 1.48 pounds per second per square foot. Figure 8. - Effect of number of holes in fuel disk on combustion efficiency of variable-area combustor with air atomization. (c) Test condition B: Pressure, 8 inches of mercury absolute; air flow, 1.48 pounds per second per square foot. Figure 9. - Combustion efficiency performance of variable-area combustor with mechanical and air atomization. (b) Test condition B: Pressure, 8 inches of mercury absolute; air flow, 1.48 pounds per second per square foot. Figure 10. - Combustion efficiency of variable-area combustor with several baffles installed; air atomization of fuel. (c) Test condition B: Pressure, 8 inches of mercury absolute; air flow, 1.48 pounds per second per square foot. Figure 11. - Performance of best models of variable-area combustor with plain disk baffle, liner holes and fuel dams, and air and mechanical atomization. (b) Combustor-inlet pressure, 8 inches of mercury absolute. Figure 12. - Pressure-loss characteristics of several variable-area combustors with plain disk baffles. Figure 13. - Typical outlet-temperature profile for variable-area combustor. Model 29. Average temperature, 1420° F. 355 Figure 14. - Variation of fuel-air ratio with fuel flow at several altitudes for typical turbojet engine. Flight Mach number, 0.8; 100-percent combustion efficiency assumed. Figure 15. - Variable-area combustor showing one method of controlling primary-air flow. .005 .010 (c) Test condition B: Pressure, 8 inches of mercury absolute; air flow, 1.48 pounds per second per square foot. Fuel-air ratio .020 .030 .035 .015 Figure 16. - Comparison of combustion efficiency performance of several combustor designs in 7-inch-diameter duct. 42 NACA RM E55BlO (b) Combustor parameter, $V_r/P_iT_i = 248 \times 10^{-6}$. Figure 17. - Variation of combustion efficiency with combustor hydraulic radius for several production and experimental combustors. ŧ 1 ŧ . þ I